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ABSTRACT 

C o n s i d e r  a v a l u a t i o n  r ing  R of a d i s c r e t e  H e n s e l i a n  f ield a n d  a p o s i t i v e  

i n t e g e r  r .  Le t  F b e  t h e  q u o t i e n t  f ield of  t h e  r ing  R[[X1, . . . ,  Xr]] .  W e  p rove  

t h a t  e v e r y  f in i t e  g r o u p  occu r s  as a Galo i s  g r o u p  over  F .  In  p a r t i c u l a r ,  if  

K0 is an  a r b i t r a r y  f ield a n d  r ~ 2, t h e n  e v e r y  f in i te  g r o u p  occu r s  as  a 

Ga lo i s  g r o u p  over  K 0 ( ( X 1 , . . . ,  X r ) ) .  

Introduct ion  

The i n v e r s e  G a l o i s  p r o b l e m  asks whether  every finite group G occurs as a 

Galois group over the field Q of rat ional  numbers. We then say tha t  G is re-  

a l i z a b l e  over Q. This problem goes back to Hilbert [Hil] who realized Sn and 

An over Q. Many more groups have been realized over Q since 1892. For exam- 

ple, Shafarevich [Sha]. finished in 1958 the work s tar ted by Scholz 1936 [Slz] and 

Reichardt  1937 [Rei] and realized all solvable groups over Q. The last ten years 

have seen intensified efforts toward a positive solution of the problem. The area 

has become one of the frontiers of ar i thmetic geometry (see surveys of Matza t  

[Mat] and Serre [Sel]). 
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Parallel to the effort of realizing groups over Q, people have generalized the 

inverse Galois problem to other fields with good arithmetical properties. The 

most distinguished field where the problem has an affirmative solution is C(t). 

This is a consequence of the Riemann Existence Theorem from complex analysis. 

Winfried Scharlau and Wulf-Dieter Geyer asked what is the absolute Galois 

group of the field of formal power series F = K ( ( X 1 , . . . ,  Xr))  in r > 2 variables 

over an arbitrary field K.  The full answer to this question is still out of reach. 

However, a theorem of Harbater  (Proposition 1.3a) asserts that  each Galois group 

is realizable over the field of rational function F(T) .  By a theorem of Weissauer 

(Proposition 3.1), F is Hilbertian. So, G is realizable over F. Thus, the inverse 

Galois problem has an affirmative solution over F. 

The goal of this note is to prove the same result in a more general setting. 

THEOREM A: Let R be the valuation ring of a discrete Henselian field K,  let r 

be a positive integer, and let F be the quotient field of R[[X1, . . . ,Xr] ] .  Then 

every finite group G is realizable over F. 

COROLLARY B: 

(a) Let Ko be an arbitrary field and let r >_ 2. Then every finite group is 

realizable over Ko( (X1, . . . , Xr)  ). 

(b) Let r _> 1 and let F be the quotient field of Zp[[X1, . . . ,Xr]]  or of  

~,,p,alg[[Xl,... ,Xr]]. Then every finite group is realizable over F. Here 

Z v is the ring of p-adic numbers and Zv,alg is the subring of all p-adic 

numbers which are algebraic over Q. 

Proof: Apply Theorem A to R = K0[[X1]], to R = Z v, and to R = Zp,alg. | 

The proof of Theorem A is a combination of several known results which we 

bring in this note. 

ACKNOWLEDGEMENT: The author is indebted to Wulf-Dieter Geyer and Dan 

Haran for their help to improve older versions of this note. 

1. T h e  t h e o r e m  of  Harbater  and Liu 

Let K be a field and let G be a finite group. We say that  G is r e g u l a r  over K 

if there exists an absolutely irreducible polynomial f C K[T, X] which is Galois 

over K ( T )  whose Galois group, namely, G(f(T,  X) ,  K(T) )  is isomorphic to G. 
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Alternatively, K(T) has a Galois extension F which is regular over K such 

that  ~(F/K(T))  : G .  

We say that  G is r e g u l a r  ove r  K w i t h  a r a t i o n a l  p o i n t  if there exists a 

dominating Galois rational map of irreducible affine curves r C ~ A 1 defined 

over K such that  C has a simple K-rat ional  point and G(C/A 1) ~ G. 

Remark  1.1: Base field extension. Note that  if G is regular over a field K,  then 

it is regular over every extension L of K.  Indeed, we may take F as free from L 

and therefore as linearly disjoint from L over K [FrJ, Lemma 9.9]. 

Similarly, if G is regular over K with a rational point, then G is regular with 

a rational point over each extension of K.  I 

The condition on C to have a K-rat ional  point implies that  F is regular over 

K.  Thus, "G is regular over K with a rational point" implies that  "G is regular 

over g " .  

Indeed, let E = K(T) be the function field of A 1 and let F be the function field 

of C over K.  By assumption, F / E  is Galois with 6(F/E)  ~ G. Also, there exists 

a place r F ~ K U {co} over K [JAR, Cor. A2]. It  follows from the following 

well known lemma that  F / K  is regular. 

LEMMA 1.2: Let F / K  be an extension of fields. I f  there exists a K-place r F --* 

K U {c~}, then F / K  is regular. 

Proof: Indeed, let wl,. . . ,w,~ E K be linearly independent over K and let 

u l , . .  �9 un E F such that  ~-~i=ln ulw~ -- 0 and not all ui are 0. Assume without loss 

that  r  E K, i = 1,.. .  ,n and extend r to a /~-p lace  r F / (  - -* / (  U {oc}. 

Then apply r to Ein__l ~-~-wi = 0 to get the relation Ein__l r -- 0. I t  follows 
ul that  1 = r ) = 0. This contradiction proves that  F is linearly disjoint from 

/~ over K.  In other words, F / K  is regular. I 

Suppose now that  K is an infinite field and that  r C --* A 1 is as above, with 

C C_ A n , n > 2. Then we may project C from an appropriate point of A n (K)  onto 

a curve C'  c_ A 2 such that  C '  is K-birationally equivalent to C and the K-rat ional  

simple point of C is mapped on a simple K-rat ional  point of C'. Thus there exists 

an absolutely irreducible polynomial f E K[T, X] with G(f(T, X),  K(T)) -~ G 

and there exists a, b e K such that  f ( a, b ) = 0 and ~ ( a, b ) r 0 or ~x ( a, b ) r O. 

PROPOSITION 1.3: Let R be local integral domain with a quotient field K such 

that R ~ K. 
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(a) (Harbater [Hal, Thin. 2.3]) I f  R is complete, then each finite group is 

regular over K with a rational point. 

(b) (Liu [Liu]) I f  R is a complete discrete valuation ring, then each finite group 

G is regular over K with a rational point. 

Remark 1.4: About  the proofs of Harbater and Liu. 

(a) Harbater uses 'mock covers' and 'Grothendieck's existence theorem' [GrD, 

(5.1.6)] in his proof. The rationality of the group over K is not explicitly stated in 

[Hal, Thm. 2.3], but it can be deduced from the properties of the 'mock covers'. 

(b) Liu [Liu] translates Harbater 's method into 'rigid analytic geometry'  for 

the case where R is a complete discrete valuation ring. We prove however, that  

this special case of Harbater 's result implies the more general theorem. I 

LEMMA 1.5: Each complete local integral domain R which is not a field contains 

a complete discrete valuation ring. 

Proof  Let m be the maximal ideal of R. Suppose first that char(R) = 0. Then 

Z C_ R and there are two possibilities: 

CASE A: Z n m r 0. Then Z n m = pZ for some prime number p. Since R is 

complete, Zp C_ R. 

CASE B: Z O m = 0. Since R is not a field, there exists 0 r x Em .  If x were 

algebraic over Q, then anx n + . . .  + alx  + ao = 0 with c o , a 1 , . . . ,  an E Z and 

a o r  0. But then a0 E Z Om. This contradiction proves that x is transcendental 

over Q. It follows that Q[x] c R and Q[x] n m = xQ[x]. The completion of Q[x] 

with respect to x is a discrete valuation ring which is contained in R. 

Now suppose that  char(R) = p. Then Fp n m = 0 and one continues as in Case 

B, replacing Q by ~'p. I 

COROLLARY 1.6: Proposition 1.3(b) implies Proposition 1.3(a). 

Proof: Let R be as in Proposition 1.3. Lemma 1.5 gives a complete valuation 

subring R0 of R. By Proposition 1.3(b), G is regular over the quotient field of 

R0 with a rational point. Hence G is also regular over K with a rational point. 

So, Proposition 1.3(a) is valid. I 
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2. H e n s e l i a n  fields 

A field K is de fec t less  with respect to a valuation v if each finite extension L 

of K satisfies 

(1) [L: K] = E e(w/v)f(w/v), 
w]v 

where w ranges over all valuations of L that extend v, e(w/v) is the ramification 

index, and f (w/v) is the relative residue degree of w/v. If (K, v) is Henselian, 

then v has a unique extension w to L. In this case we write e(L/K) (resp., 

f (L/K))  instead of e(w/v) (resp., f(w/v)). Then condition (1) simplifies to 

(2) [L: K] = e(L/K)f (L/K)  

For example, each complete discrete valued field (K, v) is defectless [Rbn, p. 236]. 

LEMMA 2.1": Let (K, v) be a defectless Henselian discrete valued field, and let 
( K, ~ ) be its completion. Then [( / K is a regular extension. 

Prool~ We have to prove that each finite extension L of K is linearly disjoint 

f rom/~  over K. 

Indeed, as [ f /K is an immediate extension e([(/K) -- 1. Thus e(YfL/[i) = 
e(I~L/K) = e(Y(L/L)e(L/K) >_ e(L/K). Similarly the residue degree satisfy 

f(I~L/K) >_ f(L/K).  Hence, by (2) 

[ / ( L : / 4 ]  <_ [L: K] = e(L/K)f(L/K)  <_ e(YfL/I()f(YiL/I~) = [ /~L: / ( ] .  

Thus [/~L : /~] = [L : K]. Conclude that L is linearly disjoint f r o m / (  over K. 
| 

Suppose now that v is a discrete valuation of K (i.e., v(K) = Z). Let O be 

its valuation ring, let L be a finite extension of K and let & be the integral 

closure of K in L. If & is a finitely generated O-module, then (1) holds [Se2, 

p. 26]. This is in particular the case if L/K is separable [Se2, p. 24]. Hence, if 

char(K) = 0, then K is defectless with respect to v. If K is a function field of 

one variable over a field K0, and v is a valuation of K which is trivial on K0, 

then there exists a finitely generated ring R over K0 and a prime ideal p of R 

such that Rp is the valuation ring of v. Since the integral closure of R in L is 

finitely generated as an R-module [Lal, p. 120], the same holds for Rp. It follows 

that (K, v) is defectless. 

* Lemmas 2.1 and 2.2 overlap with Lemma 2,13 and Corollary 2.14 of [Kul]. 
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LEMMA 2.2: Let (K, v) be a discrete Henselian valued field and let ( I(, ~) be the 

completion of (K, v). Then (K, v) is defectless in each of the following cases: 

(a) char(K) = 0. 

(b) (K, v) is the Henselization of a valued fidd (K1, vl), where K1 is a function 

field of one variable over a field Ko and Vl is a valuation of K1 which is 

trivial on Ko. 

Hence, by Lemma 2.1, in each of these cases, [ ( / K  is a regular extension. 

Proof: By the paragraph that precedes the lemma, it suffices to consider only 

Case (b). Since (1) holds if L / K  is separable, it suffices to prove (2) only in the 

case where L / K  is a purely inseparable extension of degree q. Then there exists a 

finite extension K2 of K1 which is contained in K and a finite purely inseparable 

extension L2 of K2 of degree q such that K N L2 = K2 and KL2 = L. Since K2 

is a function field of one variable over a finite extension of Ko, K2 is defectless. 

Also v2 = vlK~ has a unique extension w2 to n2. Hence, e(w2/v2)f(w2/v2)  = q. 

Denote now the unique extension of v to L by w. Then W[L~ = w2. Since (K, v) 

is also the nenselization of (/(2, v2), we have f ( L / K )  >_ f (w2/v2)  (actually both 

degrees are 1) and e ( L / g )  > e(w2/v2). So, 

q = [L: K] _> e ( L / K ) f ( L / K )  >_  (w lv2)f(w21v2) = q 

and therefore (2) holds, as desired. | 

LEMMA 2.3: Let (K, v) be a Henselian valued field and let (~[, ~) be its com- 

pletion. Suppose that [ s  is a regular extension. Then for each 0 ~ g E 

K [ X 1 , . . . ,  X,~] each point x E ([~)n with g(x) ~ 0 has a K-rational specializa- 

tion a such that g(a) r 0. Thus K is ex i s t en t i a l l y  c losed in [(. 

Proos Adding g(x) -1 to x l , . . . ,  x~ if necessary, we may assume that g = 1. By 

assumption, K(x)  is a separable extension of K. Let u l , . . . ,  u~ be a separating 

transcendence base for K ( x ) / K  and let z be a primitive element for the finite 

separable extension K ( x ) / g ( u )  which is integral over g[u] .  Then there exists an 

irreducible polynomial f E K[U1, . . . ,  U~, Z] such that f ( u ,  z) = 0 and f ' ( u ,  z) 

0 (the prime stands for derivative with respect to Z). Also, xl = hi(u, z) /ho(u) ,  

for hi �9 K[U,  Z] and 0 # h0 �9 K[U]. 

Since (K, v) is dense in (/~, ~3) we may approximate U l , . . . ,  u, ,  z by elements 

of K to any desired degree. Since K is Henselian, there exist b l , . . . ,  b,, c �9 K 
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such that f (b ,  c) = 0 and ho(b) ~ 0. It follows that (b, c) is a K-specialization 

of (u, z). 
Let now ai = hi(b, c)/ho(b),  i = 1 , . . . ,  n. Then a is a K-specialization of x. 

I 

LEMMA 2.4: Let K be an existentially dosed subfield of a field [~. I f  a finite 

group G is regular over [( (resp., with a rational point), then G is also regular 

over K (resp., with a rational point). 

Proof'. Suppose for example that G is regular over /~ with a rational point. 

Then, there exists an absolutely irreducible polynomial f E /(IT, X] which is 

Galois and monic in X such that G(f(T ,  X) ,  [i(T)) ~- G, and there exist t, x E /~ 

such that f ( t , x )  = 0 and -~T(t,x) ~ 0 or 00--/x-x (t ,x) r 0. Find u l , . . . , u n  E /~ and 

a polynomial g E K(U)[T,  X] such that K[u] is integrally closed, g(u, T, X)  = 

f (T ,  X) ,  6(g(u,  T, X),  K(u ,  T)) ~ G, and there exist rational functions p, q E 

K(U)  such that t = p(u) and x = q(u). By the Bertini-Noether theorem there 

exists 0 r h E K ( U )  such that if a specialization a of u satisfies h(a) r 0, then 

g(a, T, X)  is well defined, Galois in X, and absolutely irreducible [FrJ, Prop. 9.29]. 

Also, p(a) and q(a) are well defined and O0-~T (p(a), q(a)) ~ 0 or O0--/Zx (p(a), q(a)) ~ 0. 

Choosing h such that the discriminant of g(a, T, X)  with respect to X is nonzero, 

G(g(a, T, X),  K(a))  becomes isomorphic to a subgroup of G(g(u, T, X),  K(u ,  T)) 

[La2, p. 248, Prop. 15]. Since 

IG(g(a, T, X),  K(a,  T))] = deg x g(a, T, X)  

= deg x g(u, T, X)  = IG(g(u, T, X),  K(u ,  T))I, 

we have ~(g(a, T, X), K(a))  -- G. Since K is existentially closed in /~ ,  we can 

choose a in K n. Hence G is regular over K with a rational point. 

Similarly one proves that if G is regular over/~,  then it is also regular over K. 

I 

THEOREM 2.5 (Florian Pop*): Let (F,w) be a Henselian valued field. Then 

every finite group G is regular over F with a rational point. 

Proof" It is implicit in our assumptions that w is a nontrivial valuation. 

* Communicated to the author by Peter Roquette. 
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CLAIM: (F, w) is an extension of a discrete Henselian valued field (K, v) which 

satisfies the conclusion of  Lemma 2.3. 

Suppose first that char(F) = 0 and that w is nontrivial on Q. Then Fo = Q A F  

is Hen: elian with respect to wo = WiFo [Jar, Cor. 11.2]. Hence, there exists p such 

that (Fo, Wo) is an extension of the Henselization (Qp,alg, %) of (Q, vv), where vp 

denotes the p-adic valuation. Let K = Qp,alg and v = vp. 

Next suppose that char(F) = 0 and that w is trivial on Q. Then there exists 

x E F \ Q such that w(x)  ~ O. This element is transcendental over Q. Thus 

w induces a nontrivial valuation v0 on Q(x). Then F0 = Q(x) N F contains the 

Henselization K of Q(x) with respect to Vo. 

If char(F) = p, then w is trivial on ~'v- Hence, as in the preceding para- 

graph, there exists x E F which is transcendental over F v such that F contains 

a Henselization K of ~'p (x). 

In each case Lemma 2.2 asserts that (K, v) satisfies the conclusion of Lemma 

2.3. 

Let / (  be the completion of K with respect to v. By Proposition 1.3b, G is 

regular over /~  with a rational point. Hence, by Lemma 2.4, G is regular over F 

with a rational point. I 

Recall that a field K is P A C  if each nonempty absolutely irreducible variety 

which is defined over K has a K-rational point. Fried and VSlklein [FV1] use 

complex analysis to prove that if K is a PAC field of characteristic 0, then 

each finite group G is regular over K. VSlklein informed the author that  the 

construction in [Voe] implies that G is even regular over K with a rational point. 

Pop has observed that the methods of this note imply the same result without 

any restriction on the characteristic: 

THEOREM 2.6: Let K be a PAC field and let G be a finite group. Then G is 

regular over K with a rational point. 

Proof: The field [i  = K ( ( X ) )  is regular over K,  because the map X ~ 0 

extends to a p l a c e / f  ~ K U {c~} (Lemma 1.2). Since K is PAC this implies 

that K is existentially closed i n / (  [FrJ, p. 139, Exer. 7]. By Proposition 1.3(b), 

G is regular ove r /4  with a rational point. Hence, by Lemma 2.4, G is regular 

also over K with a rational point. I 
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3. H i l b e r t i a n  fields 

An integral domain S with a quotient field F is a K ru l l  d o m a i n  if F has a 

family Y of discrete valuations such that the intersection of their valuation rings 

is S and for each 0 r a E K there are only finitely many v E Y such that 

v(a) ~ O. For example, each Dedekind domain is a Krull domain. Also, if S is a 

Krull domain with a quotient field F,  then the integral closure of S in any finite 

extension of F, the polynomial ring S[X], and the ring of power series S[[X]] are 

again Krull domains [Bou, pp. 487, 489, and 547]. 

The d i m e n s i o n  of S is greater than 1, if S has a maximal ideal M which 

properly contains a nonzero prime ideal. | 

PROPOSITION 3.1 (Weissauer [FrJ, Thm. 14.7]): The quotient field of a Krull 

domain of dimension exceeding 1 is separably Hilbertian. 

Example 3.2: Ring of formal power series. Let R be either a field or a discrete 

valuation ring with maximal ideal m. Then, S = R[[X1,. . . ,X~]] is a Krull 

domain. Indeed, it is even a unique factorization domain [Bou, p. 511]. 

Consider the ideal M of S which consists of all power series ~ i ~ o  fi, where 

fi  E R[X1 . . . .  ,X~] is a form of degree i, fo = 0 if R is a field, and fo E m if 

R is a discrete valuation ring. Since S / M  "~ R if R is a field and S / M  ~- R i m  

if R is a discrete valuation ring, M is a maximal ideal. If R is a field (resp., 

discrete valuation ring) and r _> 2 (resp., r > 1), then M contains the prime 

ideals generated by X1 and by X2 (resp., m and by X1) and neither of them is 

contained in the other. Hence dim(S) _> 2. It follows from Proposition 3.1 that 

the quotient field of S is separably Hilbertian. | 

THEOREM A: Let R be the valuation ring of a discrete Henselian field K,  let r 

be a positive integer, and let F be the quotient field of R[[X~, . . . ,  X~]]. Then 

every finite group G is realizable over F. 

Proof." Let G be a finite group. By Theorem 2.5, G is regular over the quotient 

field of R with a rational point. Hence, G is r~gular over F with a rational 

point. In particular, G is realizable over F(T) .  By Example 3.2, F is separably 

Hilbertian. Hence G is realizable over F [FrJ, Lemma 12.12]. | 

Remark 3.3: The case r = 1. By Puiseux's theorem, G(C((X)))  ~- Z. Hence, 

only cyclic groups can be realized over C((X)). Thus, Corollary B(a) is false for 

r = l .  | 
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Remark 3.4: Cohomological dimension. We have already mentioned that every 

finite group is realizable over C(t). Moreover, the absolute Galois group, G(C(t)), 

of C(t) is even a free profinite group of uncountable rank [Rib, p. 70]. In par- 

ticular, G(C(t)) is projective, that is, of cohomological dimension 1. On the 

other hand, use the notation of Theorem A and assume that there exists a prime 

p r char(K) such that  1 _< cdp(G(K)) < oc. Then, as we explain in the next 

paragraph, cdp(G(F)) _> r + 1. In particular, although every group is realizable 

over F,  not every embedding problem for G(F) is solvable. 

Indeed, let E be the quotient field of R[[X1,. . . ,  X~_I]]. Induction on r gives, 

cd(G(E)) _> r. Hence, cd(G(E((X~))) > r + 1 [Rib, p. 277]. Also, E C_ E(X~) c_ 

F C_ E((X~)). By Krasner's lemma [Jar, Prop. 12.3] E(X~)sE((Xr)) = E((Xr)),s 

(Ls is the separable closure of a field L.) Hence F~E((X~)) = E((X~))~, and 

therefore, by Galois theory, G(E((X~))) is isomorphic to the closed subgroup 

G(F~ N E((X~)) of G(F). Conclude that  cd(G(F)) _ cdv(G(E((X~))) > r + 1 

[Rib, p. 204], as was to be shown. | 

Denote the free profinite group of countable rank by F,,. 

Example 3.5: A fietd K over which every finite group is realizable but F~ is not 

realizable over K. 

Let G1, G2, G3, . . .  be a listing of all finite groups. Consider the direct product 

G = 1-I~1 Gi. Then G is a profinite group of rank Ro. Let r G ~ G be the 

universal Frattini cover of G. Then (~ is projective [FrJ, Prop. 20.33] of rank 

R0 [FrJ, Cor. 20.26]. Hence, there exists an algebraic extension K of Q which is 

PAC with G(K) ~- G [FrJ, Thm. 20.22]. Then, each finite group is a quotient of 

and therefore it is realizable over K. 

Assume now that F~ is realizable over K. Then, _f'~ is a quotient of G. It 

follows that  there exists a Frattini cover r of F,o onto a quotient G of G [FrJ, 

Lemma 20.35]. The kernel of r is contained in the Frattini subgroup of ~'0~ 

which is trivial [FrJ, Cot. 24.8]. Hence, ~'~, ~ G and therefore there exists an 

epimorphism a: G ~ F~,. But for each i, a(Gi) is a finite subgroup of F,,. 

Since F,, is torsion free, a(Gi) = 1. Since the Gi generate G, we obtain that  

~'~ = a(G) = 1. This contradiction proves that -f',, is not realizable over K.  

Note that as K is PAC, the latter conclusion implies, in view of a result of 

Fried and Vblklein [FV2, Thm. A], that K is not Hilbertian. So, our argument 

strengthens the one given in [FV2, Sect. 2, Example]. | 
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PROPOSITION 3.6 (W.-D. Geyer): If  K is an algebraically closed field of char- 

acteristic 0 and r >_ 2, then F~ is realizable o v e r  K((XI,..., Xr)). 

Proof: Observe that  K ( ~ )  C_ K((X1 , . . . ,Xr ) ) .  As t =  ~ is transcendental 

over K,  the absolute Galois group of K(t) is free of rank which is equal to the 

cardinality of K [Rib, p. 70]. In particular F~ is a quotient of G(K(t)).* It 

follows from the next claim that  F~ is realizable over K((X1 , . . . ,  Xr)). 

CLAIM: K(t) is algebraically dosed in K( (X1 , . . . ,X ~) ) .  Indeed, consider an 

algebraic element f E K( (X1 , . . . ,  X~)) over K(t). We prove that  each prime 

divisor of K(t) is unramified in K(t,  f) .  It will follow that  f e K(t) ,  [FrJ, 

Prop. 2.15], as desired. 

To this end consider c E K and let u "--- t - c .  T h e n X 1  = X 2 ( u + c )  and 

therefore 

g(u)  = K(t) C K((X1, X2 , . . . ,  X~)) C_ K((u, X2 , . . . ,  X~)) 

C_ K((u))( (X2, . . . ,  X~)) = F. 

The map Xi ~-* 0, i = 2 , . . . ,  r, extends to a K((u))-place r F --+ K((u)) U {oc} 

which extends further to a place r F --+ K((u)) u {oc} which fixes each element 

of K((u)) .  In particular, as f �9 K(u) n F, we have f = r  �9 K((u)). But 

g((u) ) /K( t )  is unramified at the zero (t - C)o of t - c. So, (t - c)0 is unramified 

in K(t,  f) .  Finally, replace t by ~ to conclude that also (t)o~ is unramified in 

K ( t, f ), as desired. | 

Example 3.5 and Proposition 3.6 naturally raise the following question: 

PROBLEM 3.7: Let K be an arbitrary field and let r >_ 2. Is F~ realizable over 
K( (X1 , . . .  ,X,.))? 

Remark 3.8: Harbater [Ha2, Prop. 2.3] proves that  if O is the ring of integers of 

a number field K and F is the quotient field of O[[X]], then every finite group G 

is realizable over F. Moreover, F has a Galois extension F which is regular over 

K such that  G(F/F) ~ G. Note that  as O is a Dedekind domain, O[[X]] is a 

Krull domain of dimension at least 2. Hence, by Proposition 3.1, F is Hilbertian. 
| 

In view of Theorem A and Remarks 3.3 and 3.8 we may ask: 

* Florian Pop has recently announced a ,1 Riemann existence theorem' from which 
the same result follows also if char(K) # 0. If we use Pop's theorem, then Propo- 
sition 3.6 will hold for an arbitrary algebraically closed field. 
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PROBLEM 3.8: Let  0 be a domain of  characteristic 0 which is not  a field. Denote  

the quotient  field o f  O[[X]] by F.  Is every finite group realizable over F ?  | 
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